
GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 2026 Summer 2022
Lab #2: Using Complex Exponentials

Date: June 2, 2022

Pre-Lab: You should read the Pre-Lab section of the lab and do all the exercises in the Pre-Lab section
before your assigned lab time.

Verification: The Exercise section of each lab must be completed before your assigned Lab time and the
steps marked Instructor Verification must be demonstrated during the lab time. One of the laboratory in-
structors must verify the appropriate steps by signing on each step of the Instructor Verification worksheet.
Demonstrate each step to the TA or instructor.

Forgeries and plagiarism are a violation of the honor code and will be referred to the Dean of Students
for disciplinary action. You are allowed to discuss lab exercises with other students, but you cannot give
or receive any written material or electronic files. In addition, you are not allowed to use or copy material
from old lab reports from previous semesters. Your submitted work must be your own original work.

1 Introduction and Overview

The goal of this laboratory is to gain familiarity with complex numbers and their use in representing sinu-
soidal signals such as x(t) = A cos(ωt + φ) as complex exponentials z(t) = Aejφejωt. The key is to use
the complex amplitude, X = Aejφ, and then the real part operator applied to Euler’s formula:

x(t) = ℜ{Xejωt} = ℜ{Aejφejωt} = A cos(ωt+ φ)

Manipulating sinusoidal functions using complex exponentials turns trigonometric problems into simple
arithmetic and algebra. In this lab, we first review the complex exponential signal and the phasor addition
property needed for adding cosine waves. Then we will use MATLAB to make plots of phasor diagrams that
show the vector addition needed when combining sinusoids.

1.1 Complex Numbers in MATLAB

MATLAB can be used to compute complex-valued formulas and also to display the results as vector or
“phasor” diagrams. For this purpose several new MATLAB functions have been written and are available
as part of the SP-First toolbox: http://dspfirst.gatech.edu/matlab/toolbox/. Make sure that
this toolbox has been installed1 by doing help on the new M-files: zvect, zcat, ucplot, zcoords, and
zprint. Each of these functions can plot (or print) several complex numbers at once, when the input is
formed into a vector of complex numbers. For example, try the following function call and observe that it
will plot five vectors all on one graph:

zvect([1+j, j, 3-4*j, exp(j*pi), exp(2j*pi/3)])

1Correct installation means that the spfirst directory will be on the MATLAB path. Try help path if you need more infor-
mation.

1

Here are some of MATLAB’s complex number operators:

conj Complex conjugate

abs Magnitude

angle Angle (or phase) in radians

real Real part

imag Imaginary part

i,j pre-defined as
√
−1

x = 3 + 4i i suffix defines imaginary constant (same for j suffix)

exp(j*theta) Function for the complex exponential ejθ

Each of these functions takes a vector (or matrix) as its input argument and operates on each element of the
vector. Notice that the function names mag() and phase() do not exist in MATLAB.2

Finally, there is a complex numbers drill program called: which uses a GUI to generate complex number
problems and check your answers. Please spend some time with this drill since it is very useful in helping
you to get a feel for complex arithmetic.

When unsure about a command, use help.

1.2 Sinusoid Addition Using Complex Exponentials

Recall that sinusoids may be expressed as the real part of a complex exponential:

x(t) = A cos (2πf0t+ φ) = ℜ
{
Aejφej2πf0t

}
(1)

The Phasor Addition Rule presented in Section 2.6.2 of the text shows how to add several sinusoids:

x(t) =

N∑
k=1

Ak cos(2πf0t+ φk) (2)

assuming that each sinusoid in the sum has the same frequency, f0. This sum is difficult to simplify using
trigonometric identities, but it reduces to an algebraic sum of complex numbers when solved using complex
exponentials. If we represent each sinusoid with its complex amplitude

Xk = Ake
jφk (3)

Then the complex amplitude of the sum Xs is

Xs =

N∑
k=1

Xk = Ase
jφs (4)

Based on this complex number manipulation, the Phasor Addition Rule implies that the amplitude and phase
of x(t) in (2) are As and φs, so

x(t) = As cos(2πf0t+ φs) (5)

We see that the sum signal x(t) in (2) and (5) is a single sinusoid that still has the same frequency, f0, and
it is periodic with period T0 = 1/f0.

2In the latest release of MATLAB a function called phase() is defined in a seldom used toolbox; it does more or less the same
thing as angle() but also attempts to add multiples of 2π when processing a vector.

2

1.3 Harmonic Sinusoids

There is an important extension where x(t) is the sum of N cosine waves whose frequencies (fk) are
different. If we concentrate on the case where the frequencies (fk) are all multiples of one basic frequency
f0, i.e.,

fk = kf0 (HARMONIC FREQUENCIES)

then the sum of N cosine waves becomes

xh(t) =
N∑
k=1

Ak cos(2πkf0t+ φk) = ℜ

{
N∑
k=1

Xk e
j2πkf0t

}
(6)

This signal xh(t) has the property that it is also periodic with period T0 = 1/f0, because each of the cosines
in the sum repeats with period T0. The frequency f0 is called the fundamental frequency, and T0 is called
the fundamental period. (Unlike the single frequency case, there is no phasor addition theorem to combine
the harmonic sinusoids.)

2 Pre-Lab

Please do the exercises in this section prior to coming to lab.

2.1 Complex Numbers

This section will test your understanding of complex numbers when plotted as vectors. Use z1 = 2e−jπ/4

and z2 =
√
3 + j for all parts of this section.

(a) Enter the complex numbers z1 and z2 in MATLAB, then plot them with zvect(), and also print them
with zprint().

When unsure about a command, use help.

Whenever you make a plot with zvect() or zcat(), it is helpful to provide axes for reference. An
x-y axis and the unit circle can be superimposed on your zvect() plot by doing the following:
hold on, zcoords, ucplot, hold off

(b) Compute the conjugate z∗ and the inverse 1/z for both z1 and z2 and plot the results as vectors. In
MATLAB, see help conj. Display the results numerically with zprint.

(c) The function zcat() can be used to plot vectors in a “head-to-tail” format. Execute the statement
zcat([1+j,-2+j,1-2j]); to see how zcat() works when its input is a vector of complex numbers.

(d) Compute z1 + z2 and plot the sum using zvect(). Then use zcat() to plot z1 and z2 as 2 vectors
head-to-tail, thus illustrating the vector sum. Use hold on to put all 3 vectors on the same plot. If
you want to see the numerical value of the sum, use zprint() to display it.

(e) Compute z1z2 and z2/z1 and plot the answers using zvect() to show how the angles of z1 and z2
determine the angles of the product and quotient. Use zprint() to display the results numerically.

(f) Make a 2 × 2 subplot that displays four plots in one window, similar to the four operations done
previously: (i) z1, z2, and the sum z1 + z2 on a single plot; (ii) z2 and z∗2 on the same plot; (iii) z1 and
1/z1 on the same plot; and (iv) z1z2. Add a unit circle and x-y axis to each plot for reference.

3

2.2 Z-Drill

Work a few problems generated by the complex number drill program. To start the program simply type
zdrill; if necessary, install the GUI and add zdrill to MATLAB’s path. Use the buttons on the graphical
user interface (GUI) to produce different problems.

2.3 Cell Mode in MATLAB

MATLAB has a formatting syntax that allows you to produce documentation at the same time that you
make an M-file. A quick summary is that double percent signs followed by a space (%%) are interpreted as
sections in cell mode so that your code is broken into natural blocks that can be run individually. In addition,
the M-file can be “published” to an HTML file and then viewed as a nicely formatted web page. There are
several sources with information about cell mode:

1. Videos:
https://www.youtube.com/watch?v=CWgl5Ylltxk

https://www.youtube.com/watch?v=_TWBG95mCQU

and https://www.mathworks.com/help/matlab/matlab_prog/run-sections-of-programs.html

Please watch the videos, especially the first one, and read some of the documentation.
The MATLAB code in the following section uses cell mode. It can be published to HTML, and displayed

in a web browser (the default is MATLAB’s internal browser).

2.4 Vectorization

The power of MATLAB comes from its matrix-vector syntax. In most cases, loops can be replaced with
vector operations because functions such as exp() and cos() are defined for vector inputs, e.g.,

cos(vv) = [cos(vv(1)), cos(vv(2)), cos(vv(3)), ... cos(vv(N))]

where vv is an N -element row vector. Vectorization can be used to simplify your code. If you have the
following code that plots the signal in the vector yy,

M = 200;

for k=1:M

x(k) = k;

yy(k) = cos(0.001*pi*x(k)*x(k));

end

plot(x, yy, ’ro-’)

then you can replace the for loop with one line and get the same result with four lines of code:
M = 200;

x = 1:M;

yy = cos(0.001*pi*x.*x);

plot(x, yy, ’ro-’)

Run these two programs to see that they give identical results, but note that the vectorized version runs much
faster.

2.5 Vectorizing a 2-D Evaluation

You can also vectorize 2D functions. Suppose that you want to plot f(u, v) = u2+v2 versus (u, v) over the
domain [−20, 20]× [−20, 20]. The result should be a parabolic surface. To avoid having nested for loops,
we can use meshgrid instead:

4

u = -20:0.5:20;

v = -20:0.5:20;

[uu,vv] = meshgrid(u,v);

mesh(u,v,uu.*uu + vv.*vv)

The meshgrid function generates all the pairs (u, v) for the domain.

2.6 Functions

Functions are a special type of M-file that can accept inputs (matrices, vectors, structures, etc.) and also
return outputs. The keyword function must appear as the first non-comment word in the M-file that defines
the function, and that line of the M-file defines how the function will pass input and output arguments. The
file extension must be lower case “m” as in my func.m. See Section B-6 in Appendix B of the text for more
discussion.

The following function has several mistakes (there are at least four). Before looking at the correct one
below, try to find these mistake(s):

matlab mfile [xx,tt] = badcos(ff,dur)

%BADCOS Function to generate a cosine wave

% usage:

% xx = badcos(ff,dur)

% ff = desired frequency

% dur = duration of the waveform in seconds

%

tt = 0:1/(100*ff):dur; %-- gives 100 samples per period

badcos = real(exp(2*pi*freeq*tt));

The corrected function should look something like:
function [xx,tt] = goodcos(ff,dur)

tt = 0:1/(100*ff):dur; %-- gives 100 samples per period

xx = real(exp(2i*pi*ff*tt));

Notice that the word function must be at the beginning of the first line. Also, the exponential needs to have
an imaginary exponent, and the variable freeq must be defined before being used. Finally, the function has
xx as an output, so the variable xx must appear on the left-hand side of at least one assignment line within
the function body. In other words, the function name is not used to hold values produced in the function.

2.7 Structures in MATLAB

MATLAB can do structures. Structures are convenient for grouping information together. For example, we
can group all the information about a sinusoid into a single structure with fields for amplitude, frequency
and phase. We could also add fields for other attributes such as a signal name, the signal values, and so on.
To see how a structure might be used, run the following program which plots a sinusoid:

x.Amp = 7;

x.phase = -pi/2;

x.freq = 100;

x.fs = 11025; %-- sampling rate controls the spacing of values on the time grid

x.times = 0:(1/x.fs):0.05;

x.values = x.Amp*cos(2*pi*(x.freq)*(x.times) + x.phase);

x.name = ’My Signal’;

x %---- echo the contents of the structure "x"

plot(x.times, x.values)

title(x.name)

5

Notice that the fields in the structure can contain different types of variables: scalars, vectors or strings.
You can also have arrays of structures. For example, if xx is array of sinusoid-structures with the same

fields as above, you would reference one of the sinusoids via:

xx(3).name, xx(3).Amp, xx(3).freq, xx(3).phase

%

plot(xx(3).times, xx(3).values)

title([xx(3).name,’ Amp=’,num2str(xx(3).Amp),’ Phase=’,num2str(xx(3).phase)])

Notice that the array name is xx, so the array index, 3, is associated with xx, e.g., xx(3).

6

3 In-lab Exercise: Complex Exponentials

In the Pre-Lab section of this lab, you saw examples of function M-files. In this section, you will write
functions that can generate sinusoids, or sums of sinusoids.

For the instructor verification, you will have to demonstrate that you understand everything in a given
subsection. It is not necessary to do everything in the subsections; skip parts that you already know. The
Instructor Verification is usually placed close to the most important item, i.e., the most likely one to generate
questions from the TAs.

3.1 Vectorization

Use the vectorization idea to write 1 or 2 lines of code that will perform the same task as the inner loop of
the following MATLAB script without using a for loop. If you are ambitious, try to replace both loops with
some vectorized code.

%--- make a plot of sum of cosines

% Create a single stream and designate it as the current global stream:

thisClass = RandStream(’mt19937ar’,’Seed’,1);

dt = 1/800;

XX = rand(thisClass,1,3).*exp(2i*pi*rand(thisClass,1,3)); %--Random amplitude and phases

freq = 20;

ccsum = zeros(1,500);

for kx = 1:length(XX)

for kt = 1:500

t = kt*dt;

Ak = abs(XX(kx));

phik = angle(XX(kx));

ccsum(kt) = ccsum(kt) + Ak*cos(2*pi*freq*t + phik);

tt(kt) = t;

end

end

plot(tt,ccsum) %-- Plot the sum sinusoid

grid on, zoom on, shg

Instructor Verification (separate page)

3.2 M-file to Generate One Sinusoid

Write a function that will generate a single sinusoid, x(t) = A cos(2πft + φ). The function should have
the following input arguments: a sinusoid-structure with two fields for the frequency (f) in Hz, the com-
plex amplitude (X = Aejφ), and then three other arguments: a duration argument (dur), followed by an
argument for the starting time (tstart), and then a final argument which is the spacing between times, ∆t.
The function should return a structure having both of the fields of the input structure plus two new fields: the
vector of values of the sinusoidal signal (x) along with the corresponding vector of times (t) at which the
sinusoid values are known. The spacing between times in the time-vector, ∆t, is a constant, but make sure
that it is small enough so that there are at least 32 time points per period of the sinusoid. Call this function
makeCosVals(). Hint: use goodcos() from the Pre-Lab part as a starting point. Here is a suggested
template that needs to be completed for the M-file:

7

function sigOut = makeCosVals(sigIn, dur, tstart, dt)

%

freq = sigIn.freq;

X = sigIn.complexAmp;

%

%...(Fill in several lines of code)...

%

tt = tstart: dt : ???; %-- Create the vector of times

xx = A*cos(...???; %-- Vectorize the cosine evaluation

sigOut.times = ???; %-- Put vector of times into the output structure

sigOut.values = ???; %-- Put values into the output structure

Plot the result from the following call to test your function.
mySig.freq = 2; %-- (in hertz)

mySig.complexAmp = 5*exp(j*pi/4);

dur = 2;

start = -1;

dt = 1/(32*mySig.freq);

mySigWithVals = makeCosVals(mySig, dur, start, dt);

%- Plot the values in sigWithVals

Instructor Verification (separate page)

3.3 Sinusoidal Synthesis with an M-file: Different Frequencies

Since we will generate many functions that are a sum of sinusoids, it will be convenient to have a MATLAB

function for this operation. To be general, we should allow the frequency of each component (fk) to be
different. The following expressions are equivalent if we define the complex amplitude Xk as Xk = Ake

jφk .

x(t) = ℜ

{
N∑
k=1

Xke
j2πfkt

}
= ℜ

{
N∑
k=1

(Ake
jφk)ej2πfkt

}
(7)

x(t) =
N∑
k=1

Ak cos(2πfkt+ φk) (8)

3.3.1 Write a Sum of Sinusoids M-file

Write an M-file called addCosVals.m that will synthesize a waveform in the form of (7) using Xk defined
in (3). The result is not a sinusoid unless all the frequencies are the same, so the output signal has to be
represented by its values over some (finite) time interval.

Even though for loops are rather inefficient in MATLAB, you must write the function with one outer
loop in this lab. The inner loop should be vectorized. The first few statements of the M-file are the comment
lines—they should look like:

8

function sigOut = addCosVals(cosIn, dur, tstart, dt)

%ADDCOSVALS Synthesize a signal from sum of sinusoids

% (do not assume all the frequencies are the same)

%

% usage: sigOut = addCosVals(cosIn, dur, tstart, dt)

%

% cosIn = vector of structures; each one has the following fields:

% cosIn.freq = frequency (in Hz), usually none should be negative

% cosIn.complexAmp = COMPLEX amplitude of the cosine

%

% dur = total time duration of all the cosines

% start = starting time of all the cosines

% dt = time increment for the time vector

% The output structure has only signal values because it is not necessarily a sinusoid

% sigOut.values = vector of signal values at t = sigOut.times

% sigOut.times = vector of times, for the time axis

%

% The sigOut.times vector should be generated with a small time increment that

% creates 32 samples for the shortest period, i.e., use the period

% corresponding to the highest frequency cosine in the input array of structures.

In order to verify that this M-file can synthesize harmonic sinusoids, try the following test:

ss(1).freq = 21; ss(1).complexAmp = exp(j*pi/4);

ss(2).freq = 15; ss(2).complexAmp = 2i;

ss(3).freq = 9; ss(3).complexAmp = -4;

%

dur = 1;

tstart = -0.5;

dt = 1/(21*32); %-- use the highest frequency to define delta_t

%

ssOut = addCosVals(ss, dur, tstart, dt);

%

plot(ssOut.????, ssOut.????)

%

Use MATLAB to make a plot of ssOut. Notice that the waveform is periodic. Measure its period and state
how the period is related to the fundamental frequency which is 3Hz in this case.

9

Lab #2
ECE-2026 Summer-2022

INSTRUCTOR VERIFICATION LIST

Part 3.1 Replace the inner for loop with only one or two lines of vectorized MATLAB code. Show the
sinusoids generated by both the codes - with and without for loop - to the instructors.

Part 3.2 and other places: Learn to publish MATLAB’s script capability to create and save the plots
when doing the Instructor Verifications.

Part 3.3.1 Show that your addCosVals.m function is correct by running the test in Section 3.3.1 and
plotting the result. Measure the period of signal in the structure ssOut, and explain its relationship to the
fundamental frequency.

10

